Projections of normed linear spaces with closed subspaces of finite codimension as kernels

نویسندگان

  • Endre Makai
  • Horst Martini
چکیده

It follows from [1] and [7] that any closed n-codimensional subspace (n ≥ 1 integer) of a real Banach space X is the kernel of a projection X → X, of norm less than f(n) + ε (ε > 0 arbitrary), where f(n) = 2 + (n − 1) √ n + 2 n + 1 . We have f(n) < √ n for n > 1, and f(n) = √ n − 1 √ n + O (

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximinal and Strongly Proximinal Subspaces of Finite codimension

Let X be a normed linear space. We will consider only normed linear spaces over R (Real line), though many of the results we describe hold good for n.l. spaces over C (the complex plane). The dual of X, the class of all bounded, linear functionals on X, is denoted by X∗. The closed unit ball of X is denoted by BX and the unit sphere, by SX . That is, BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖...

متن کامل

On intersections of ranges of projections of norm one in Banach spaces

In this short note we are interested in studying Banach spaces in which the range of a projection of norm one whose kernel is of finite dimension, is the intersection of ranges of finitely many projections of norm one, whose kernels are of dimension one. We show that for certain class of Banach spaces X, the natural duality between X and X∗∗ can be exploited when the range of the projection is ...

متن کامل

One-complemented subspaces of Musielak-Orlicz sequence spaces

The aim of this paper is to characterize one-complemented subspaces of finite codimension in the Musielak–Orlicz sequence space l . We generalize the well-known fact (Ann. Mat. Pura Appl. 152 (1988) 53; Period. Math. Hungar. 22 (1991) 161; Classical Banach Spaces I, Springer, Berlin, 1977) that a subspace of finite codimension in lp, 1 p<∞, is one-complemented if and only if it can be expressed...

متن کامل

A Certain Class of Character Module Homomorphisms on Normed Algebras

For two normed algebras $A$ and $B$ with the character space   $bigtriangleup(B)neq emptyset$  and a left $B-$module $X,$  a certain class of bounded linear maps from $A$ into $X$ is introduced. We set $CMH_B(A, X)$  as the set of all non-zero $B-$character module homomorphisms from $A$ into $X$. In the case where $bigtriangleup(B)=lbrace varphirbrace$ then $CMH_B(A, X)bigcup lbrace 0rbrace$ is...

متن کامل

Sets invariant under projections onto two dimensional subspaces

The Blaschke–Kakutani result characterizes inner product spaces E, among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace F there is a norm 1 linear projection onto F . In this paper, we determine which closed neighborhoods B of zero in a real locally convex space E of dimension at least 3 have the property that for every 2 dimensional subspace F ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Periodica Mathematica Hungarica

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2006